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A PAGE TEST WITH NUISANCE PARAMETER ESTIMATION 

INTRODUCTION 

Signal detectors may be described as parametric, where the observed data are assumed to 

follow a parameterized probability density function (PDF), or nonparametric. Parametric 

detectors provide performance improvement over nonparametric detectors at the expense of 

increased sensitivity to an incorrect parameterization. Many parameterizations of realistic 

detection problems result in composite hypothesis tests where there are unknown nuisance 

and signal parameters. Nuisance parameters are unknown parameters having the same value 

under both the signal-present and signal-absent hypotheses. 

When testing a finite set of data, there are several techniques for dealing with nuisance 

parameters: uniformly most powerful tests, Bayesian approaches when prior distributions 

on the nuisance parameters are known or can be assumed, invariant tests, the generalized 

likelihood ratio test, or ad hoc techniques such as the substitution of maximum likelihood 

estimates (MLEs) of the nuisance parameters from auxiliary data in a log-likelihood ratio 

(LLR) or locally optimal nonlinearity. Such techniques do not always extend to sequential 

detection problems. As illustrated by Govindarajulu [1], most sequential tests for composite 

hypotheses essentially estimate unknown parameters using all data previous to the current 

sample. The disadvantages of these techniques are that they do not allow nonstationary 

nuisance parameters and are potentially difficult to analyze. Stahl [2] used a similar pro- 

cedure in the Page test [3] for a change detection problem where the nuisance parameters 

were estimated by an exponential averager over all data previous to the current sample. 

Disadvantages of this technique are the lack of theoretical analysis of the performance and 

the corruption of the nuisance parameter estimate (NPE) by data containing both signal and 

noise. This report proposes and analyzes a method for the estimation of nuisance parameters 

in the Page test for the change detection problem. 
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BACKGROUND - THE PAGE TEST 

The change detection problem, in general, may be characterized by a model assuming that 

the observed data 

xi,x2,x3,... (1) 

are statistically independent and distributed according to the rule 

/(x|A,0o)   i<P ,0x 

f(x\\9x)   i>p 

where f(x\X,9) is a parameterized PDF having A as an unknown nuisance parameter and 9 

as a signal strength parameter. Here, 90 is the value of 9 when no signal is present (typically 

öo = 0), 6>i is the value of 9 when signal is present, and p is the unknown starting time of 

the signal. 

The change detection problem amounts to determining, as rapidly as possible, when the 

sequence of data changes from following the signal-absent probability distribution law to 

following the signal-present law. If g (x) is the detector nonlinearity applied to the observed 

data, the Page test declares a detection when the Page test statistic, 

Wk = max {0, Wk-i + g (xfc)} ,   k > 1 , (3) 

is greater than a threshold h, where W0 = 0. A sample Page test statistic sequence is found 

in figure 1. 

As with most sequential tests, the primary performance measures for the Page test are the 

average number of samples* before a threshold crossing under the signal-present and signal- 

absent hypotheses. For the Page test, these are respectively called the average number of 

samples before a detection, D, and the average number of samples between or before a false 

alarm, T. 

*Also known as the average sample number, average stopping time, or average record length. 



Page Test 
Statistic 

Wk 

Wald tests terminating at 
signal-absent hypothesis 
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Time Index k 

Figure 1. Sample Page Test Statistic Sequence 

When g (x) is the LLR of a data sample, the Page test yields the smallest worst case D 

when f is lower bounded by ?0. The worst case D is observed when the signal starts at a 

regulation or reset of the Page test statistic (i.e., Wk = 0). Had the signal started at some 

other time index, the Page test statistic may have crossed the threshold sooner, resulting in 

a smaller value for D. The optimality was shown asymptotically as ?0 —> oo by Lorden [4] 

and subsequently for finite ?0 by Moustakides [5]. 

If the signal-present hypothesis is characterized by an unknown signal strength, the locally 

optimal nonlinearity may be substituted for the LLR in g(x). Dyson [6] showed that this 

results in the same asymptotic optimality (i.e., Lorden's result) as the LLR in the Page test 

as the signal strength goes to zero. 

The Page test has also been applied to the detection of a temporary change in the PDF 

of the observed data. In this case, the false alarm performance measure (?) remains the 

same. However, the detection performance is characterized by the probability of detecting 

the signal. Analytical methods for approximating the probability of detection that are 

extremely accurate when g (xk) is Gaussian are discussed by Han, Willett, and Abraham [7]. 

A simulation based method providing accurate approximation for non-Gaussian Page test 

updates may be found in [8]. 

3 
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AVERAGE SAMPLE NUMBER ANALYSIS 

Basseville and Nikiforov [9] discuss the primary analytical results for determining the 

average sample numbers (ASNs) for the Page test. These are based on representing the 

Page test as consecutive Wald tests terminating at the signal-absent or null hypothesis, 

followed by a final Wald test terminating at the signal-present hypothesis. The termination 

of the Wald tests at the null hypothesis is reflected in the Page test statistic as a regulation 

or reset to zero. 

A Wald test may be described by the stopping time 

JV = inf{n>0:   Sng(a,b)} (4) 

where a and b are thresholds chosen to satisfy Type I and II error probabilities and 

Sn = £,9(Xi) (5) 
»=i 

is the cumulative summation of the data {xi}n
i=l transformed by the nonlinearity g. When 

g (x) is the LLR, the test is known as the sequential likelihood ratio test (SLRT) or sequential 

probability ratio test (SPRT) and is optimal in the sense of providing the smallest ASNs of 

any test with equivalent Type I and II error probabilities [10]. 

The ASN analysis of the Page test employs Wald's first equation ([11], [9], [12]) 

E[JV1=   E[SN] (6) 

and Wald's fundamental identity 

E 

where 

M(t) = E 

etSN M (tyN] = 1 , (7) 

e* ff(z») (8) 

is the moment generating function (MGF) of the transformed data. Equation (6) is used 

to approximate the average number of samples for the Wald test terminating at either the 

signal-present or signal-absent hypotheses, and equation (7) is used to approximate the 
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probability that the Wald test terminates at the signal-absent hypothesis as a function of 

the signal strength 0 (also known as the operating characteristic of the Wald test). How the 

approximations are carried out forms the differences between the techniques discussed by 

Basseville and Nikiforov [9]. 

Wald Approximation 

The first, less accurate result utilizes Wald's approximations to the ASNs and operating 

characteristic, P (0), of a Wald test. They are based on the assumption that when the test 

stops, the value of the test statistic is close to the value of the threshold; that is, 5jv ~ a 

or SN ~ b. As seen in Basseville and Nikiforov [9], this method leads to the approximations 

for the Page test ASNs 

i _i_ hfa — e
hte0 

and 

D « 1 + ht°> ~ *htH , (10) 
teiEei{g {xi)\ 

where the expectations are taken, respectively, under the signal-absent (0O) and signal-present 

(0i) hypotheses. Here, te, for 0 = 0O or 0i, is the nonzero unity-root of the MGF 

Ee[ete9{Xi)}=M(te) = l. (11) 

Siegmund Approximation 

The second approximation discussed by Basseville and Nikiforov [9] utilizes corrections, 

derived by Siegmund [11], to the Wald approximations to the ASNs and operating character- 

istic of the Wald test. The corrections attempt to account for the excess above or below the 

threshold in the Wald test at termination. The resulting approximations to f and D ([11], 

[9]) are identical in form to those of equations (9) and (10) with the threshold h replaced by 

hs = h + p+-p„ (12) 

where p+ and p_ represent the corrections due to excess beyond a threshold. 
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The corrections are derived, as seen in Siegmund [11], by first normalizing the Wald test 

statistic to have zero-mean and unit-variance. If the mean and variance of g (x) are /J, and 

a2 respectively, then the normalized update is 

9 {Xi) ~ ß 
Y,= (13) 

Let the cumulative summation be described by 

Vn = t,Yi (14) 
t=i 

and let the test (that stops when the upper threshold h is crossed) have the stopping time 

JV+ = inf {n > 0 :   Vn > h} . (15) 

A lemma described by Siegmund [13] states that the excess beyond the threshold in the Wald 

test statistic at termination may be approximated by 

E 

In [11], Siegmund shows that 

VN+ - h 
E V2 

2E vN+ 

E V2 VN+_ 
-    = 

K      H 

2E VN+. 
6         7T 

(16) 

(17) 

where 

H = £o A-2Relog [y2 [1 - $ (A)]} dX , 

$(A) = E ^ 

(18) 

(19) 

is the characteristic function of Yi, 

K   =   E 

E 

If] 
(g (xi) - fJ-Y 

(20) 
a" 

is the third moment of Y, or, equivalently, the skewness of g (x^, and the expectations are 

taken under either the signal-present or signal-absent hypotheses, depending on whether the 

correction is for D or T. 
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The excess beyond the lower threshold will simply be the negative of equation (17) if the 

Wald test update has a symmetric distribution as is the case with a Gaussian g (xi) (this 

is all that Siegmund considers in [11]). Let the test that stops when the lower threshold is 

crossed have the stopping time 

AL = inf {n > 0 :   Vn < 0} . 

The excess in the Wald test statistic at termination may then be approximated by 

E 

(21) 

E Vj iV_ 

V2 

2E " vN_~ 

E \-VN_f 
2E '-vN_[ 

E w2
M+ 

2E W, M+ 

(22) 

where 

wn = -K = E (-**) (23) 
2=1 

and 

M+ = inf {n > 0 :   Wn > 0} = iV_ , (24) 

which is the same form as the above (equations (14)-(16)) except that Y{ is replaced by 

-Yi. Noting that the third central moment of -F, is simply -K and that the characteristic 

function of -Yi is $ (-A), equation (22) may be simplified, using equation (17), to 

E W2
M+ K 

2E W, M+ 

+ 7T' ̂ jT A-2Relog{^[l-$(-A)]}dA. (25) 

The natural logarithm of a complex number (z = re>e) may be described in Cartesian 

form through the following identity 

log z   —   log reje 

=   log r + j9 . (26) 

7 
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Thus, the real part of the natural logarithm of a complex number is simply the logarithm of 

the magnitude, 

Re log z = log r (27) 

Use of this identity in equation (18) results in the simplification 

2 tf = |^oA-2log{^|l-<&(A)|}dA. 

Now, using the identity 

$(A)   =   E JW 

=   E[cos(Ayi)]+iE[sin(Ayi)] , 

(28) 

(29) 

it can be shown that 

|1-$(A)|   = |l-E[cos(Ayi)]-j'E[sin(Ari)]| 

= {(1 - E [cos (AFi)])2 + E [sin (AF,)]2}1 

= {(l-E[cos(-Ari)])
2 + E[sin(-Ayi)]2}' 

= |l-*(-A)| 

is an even function of A. Thus, equation (25) simplifies to 

E wh+ 

2E W, M+ 

K       H 
+ _ 

6 7T 

(30) 

(31) 

Incorporating a non-unit-variance into the Wald test update simply results in scaling 

equations (17) and (31) by the standard deviation a to yield the Siegmund corrections 

K     H) (32) 

and 

p_ =a 
[K     H (33) 
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EXAMPLES 

Gaussian shift in mean, exponential, and noncentral chi-squared signal types often arise 

in sonar signal processing applications. For example, the Gaussian shift in mean signal may 

represent a range-induced bias in the innovations sequence of a tracking algorithm. The 

exponential signal type is encountered as the magnitude-squared-basebanded-matched-filter 

output or as the result of frequency domain processing on a sinusoidal signal with Gaussian 

random amplitude and uniform random phase corrupted by Gaussian noise (e.g., multiple 

point reflectors with none dominant for active sonar). The noncentral chi-squared signal is 

the result of frequency domain processing on a sinusoidal signal with deterministic amplitude 

and uniform random phase corrupted by Gaussian noise (e.g., a single dominant reflector 

for active sonar). In the following sections, the Siegmund correction terms for each of these 

signal types are presented and used to compare the Siegmund and Wald approximations to 

D and f to the ASN obtained through simulation. 

Siegmund Correction Terms 

This section contains the Siegmund correction terms and the information required to 

obtain them for Gaussian shift in mean, exponential, and noncentral chi-squared signals. 

Table 1 contains the Siegmund correction terms and the mean, variance, skewness, and 

characteristic function of the normalized statistic of equation (13) for each of the assumed 

distributions for the Page test update g(x). Here, N(p,a2) represents a Gaussian random 

variable with mean p and variance a2, Exp (a) represents an exponential random variable 

with mean a, and X2 (6) represents a noncentral chi-squared random variable with n degrees 

of freedom and noncentrality parameter 6. 

The results for the Gaussian shift in mean signal may be found in Siegmund [11] or 

Basseville and Nikiforov [9]. The skewness values and the characteristic functions for the 

unnormalized random variables may be found in Manoukian [12] or Johnson and Kotz [14]. 

The Siegmund corrections for the noncentral chi-squared signal, p*+ and p*_, are functions of 

n and «5 and must be computed individually using equations (32) and (33). Table 2 contains 

numerical values of the correction terms for n = 2 and several values of 6. Note that when 
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n — 2 and 8 = 0, a central chi-squared random variable results and the correction terms 

are identical to those for the exponential signal with a = 2, which correctly reflects the 

relationship between these two types of random variables. 

Table 1. Siegmund Corrections to Sample Signals 

9(x) EM Var [g] K $(A) P+ p- 

A/"(/x,a2) P a2 0 
A2 

e   2 0.5825a -0.5825a 

Exp 0) a a2 2 e-^il-jX)-1 cr "k 
^ (S) n + 8 a2 = 2{n + 28) V8(n+36) 

{n+28)% 

„..nf      ,-nA           26X2       1 

p; ?- 
eXPj     J   <r       cr(a-2j\) j 

Table 2. Siegmund Corrections for Noncentral Chi-Squared Signal for n = 2 

and Several Values of 8 

8 p\ P- 

0 2 2 
3 

0.1 2.0948 -0.7008 

1 2.6528 -0.9861 

10 4.9129 -2.9735 

Simulation Comparison 

Ideally, the nonlinearity applied to the Page test is the LLR or the locally optimal non- 

linearity of the observed data. For the Gaussian shift in mean and exponential signal types, 

the LLR and locally optimal nonlinearity have the same form: scaled shifted versions of the 

data. The LLR for the noncentral chi-squared signal has a complicated form [14]; however, 

10 
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the locally optimal nonlinearity is simply the shifted data. The amount of the shift may be 

chosen to maximize the asymptotic performance of the Page test for a specified signal-to- 

noise ratio (SNR) as described in [15]. Table 3 contains the statistical description, LLR or 

locally optimal nonlinearity, bias term, mean, variance, and SNR definition for each of the 

signal types. 

Table 3. Information About Sample Signals 

Type 9(x) Bias (r) Kb] Vars [g] SNR 

M{^a2) \X-T 2a2 2<72 a2 a2 

Exp (1 + s) -^TX ~ T s+1 log (1 + s) s — r s2 
S 

XI (Ö) X — T 2(l + f) log (l + f) 6 + 2-T 4(<5 + l) 6 

In order to determine the Wald and Siegmund approximations to D and f, the unity-root 

of the MGF (11) is required under the signal-present and signal-absent hypotheses. As the 

nonlinearity for the Gaussian shift in mean and exponential signals is their respective LLR, 

the MGF roots are tdo = 1 and t&l = -1. The MGF roots for the locally optimal nonlinearity 

for the noncentral chi-squared signal are the solutions to 

8t6l 

1 - 2t9l 

rtei-log (l-2t, 0i, 0 (34) 

and 

rtfl0+log (l-2tflo) = 0. (35) 

The Wald and Siegmund approximations for the average delay before detection and that 

estimated from simulations are found in figures 2-4 for each signal type as a function of 

SNR. The threshold was h = 5 for the Gaussian shift in mean and exponential signals 

and h = 10 for the noncentral chi-squared signal. The estimated value of D is the sample 

mean of the number of samples required for detection, taken over 1000 trials. Observe 

that for each signal type, the Siegmund approximation is closer to the simulated value than 

11 
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the Wald approximation, particularly for large SNR. This result is expected, as the Wald 

approximation ignores the excess over the threshold, which may be substantial for large 

strength signals. 

The Wald and Siegmund approximations for the average time between false alarms and 

that estimated from simulations are found in figures 5-7 for each signal type as a function of 

threshold. The nonlinearity for each signal was formed assuming that the signal strength was 

zero decibels (4 = s = 6 = 1). As with the results for D, utilizing the Siegmund correction 

terms provides a better approximation than the straight Wald method. The quality of the 

Wald and Siegmund approximations is not as good for f as for D. This is a direct result of 

the increased number of resets or regulations of the Page test when no signal is present (i.e., 

more Wald tests terminating at the signal-absent hypothesis), which introduces a higher 

sensitivity to errors in the approximations to the ASNs and operating characteristic of the 

Wald test. 

12 
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PROPOSED ALGORITHM 

As previously mentioned, the Page test [3] may be described as consecutive Wald tests ter- 

minating at the signal-absent hypothesis followed by a final Wald test terminating at the 

signal-present hypothesis. Each termination of a Wald test at the signal-absent hypothesis 

(represented by a regulation or reset of the Page test to zero) indicates that all previous 

data are considered to be signal free. Thus, these data may be used to estimate any un- 

known parameters that also exist under the signal-absent hypothesis; for example, nuisance 

parameters. An additional benefit of using the data previous to the most recent reset of the 

Page test is the statistical independence of these data and the Page test statistic after the 

reset. Thus, analysis may be performed by conditioning on the observed NPE, followed by 

an expectation removing the conditioning. 

The following update algorithm describes the proposed Page test with nuisance parameter 

estimation. Here, auxiliary data are data that have been determined to be signal-free by 

the Page test, A is the NPE formed from the auxiliary data, and g-x (x) is the detector 

nonlinearity. 

1. If Wfc = 0 
- Store new auxiliary data 
- Update A using new auxiliary data 

2. Set Wfc+i = max {0, Wk + gx (xk+1)} 

3. If Wk+l > h 
- Declare signal present and stop 

Else 
- Set k = k + 1 and return to step 1 

In the following sections, details associated with the nuisance parameter estimation are 

discussed and the Siegmund- and Wald-based approximations to the ASN of the Page test 

with nuisance parameter estimation are derived and shown to simplify to those for the stan- 

dard Page test when the nuisance parameter is known exactly. The Page test with nuisance 
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parameter estimation is then applied to detect a Gaussian shift in mean signal where D 

and T are derived and compared to simulation results. The Siegmund-based approximations 

are used to illustrate the Page test performance as a function of the threshold, SNR, and 

amount of auxiliary data. Finally, the Wald-based approximations are used to illustrate the 

asymptotic (in the sense of large threshold) relationship between the threshold and f and 

D. 

NUISANCE PARAMETER ESTIMATION 

The NPE is formed from auxiliary data and, depending on the situation, may only be 

a consistent estimator under the signal-absent hypothesis. Thus, it is important that the 

auxiliary data truly be signal-free. A necessary but not sufficient condition for ensuring this 

is to have the auxiliary data consist of data previous to the most recent reset of the Page 

test. However, due to the inherent delay observed between the time a signal starts and a 

threshold crossing indicating a detection, there is a nonzero probability that this auxiliary 

data may contain both signal and noise. To counter this possibility, it is suggested that a 

fixed number of either samples or resets be used as a buffer zone. Figure 8 depicts these two 

arrangements. 

For extremely weak signals, the delay before detection can be substantial. This may cause 

the NPE to be corrupted by data containing noise and signal even with a carefully designed 

buffer zone. This problem may be avoided altogether if there exists an estimator for the 

nuisance parameter that has the same form under both the signal-absent and signal-present 

hypotheses. 

Most practical scenarios will involve nuisance parameters that are slowly changing in 

time. In this situation, the auxiliary data should consist of a block of data—as opposed to 

using all previous data to estimate the nuisance parameter. The size of the block and its 

positioning should be chosen to ensure that the nuisance parameter is stationary from the 

beginning of the block of auxiliary data to either a threshold crossing indicating a detection 

or the next reset of the Page test statistic. 
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AVERAGE SAMPLE NUMBER ANALYSIS 

As seen in Basseville and Nikiforov [9], the first step in determining the ASN for the 

Page test is to determine the relationship to the ASNs and operating characteristic for the 

individual Wald tests that form the Page test. The following definitions are required: 

A (9) - Average number of samples for the Page test with nuisance parameter es- 
timation when 9 is the signal strength 

Bh (9) - Average number of samples for the Wald test terminating at threshold h 
when 6 is the signal strength 

B0 {9) - Average number of samples for the Wald test terminating at threshold 0 
when 9 is the signal strength 

P (9) - Probability that the Wald test terminates at threshold 0 when 9 is the 
signal strength 

Suppose the number of Wald tests that comprise the Page test is m; that is, m - 1 Wald 

tests terminating at threshold 0 followed by one terminating at threshold h. Then, the ASN 

for the Page test conditioned on m is 

A(9\m) = {m-l) B0 {8) + Bh (9) . (36) 

The conditioning on m may be removed by taking the expected value 

A{8)   =   E[A(9\m)} 

=   E[m-l]B0{9) + Bh{9) 

=   E[m}B0(9) + Bh(0)~B0(9) . (37) 

Each consecutive Wald test in the Page test is independent of the others. Thus, as found in 

Manoukian [12], m follows a geometric probability mass function with parameter q = \-P (9) 

and mean 

E[m]   =   - 
q 

= • (38) 
l-P{9) K   ' 
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This results in the form 

A (9)   = 
Bp (6) 

1-P(9) 
+ Bh (9) - B0 (9) 

(39) 

for the ASN of the Page test. 

When the Page test includes nuisance parameter estimation, with the update scheme 

described in the previous section, the ASNs and operating characteristic of the Wald test 

must be determined conditioned on the NPE. Here, it is assumed that each NPE is inde- 

pendent of the data in the nearby Wald tests and independent of all the other NPEs. This 

assumption will be valid at least for large buffer sizes and short block sizes. Now, the ASNs 

and operating characteristic of the Wald test may be described as 

and 

Bh(9) = E-x[Bh(e\\) 

BO(9) = EX[B0(9\\)] , 

P(0) = EX[P(6\X) 

(40) 

(41) 

(42) 

where the arguments of the expectations are the respective ASN or operating characteristic 

conditioned on the NPE A. 

The test statistic of the Wald test used to implement the Page test at the nth sample is 

the cumulative summation 

Sn = !>(**)■ (43) 
i=l 

Let iV be the stopping time of this particular Wald test (i.e., the test has an upper threshold 

of h and a lower threshold of zero), 

iV = inf{n>0:   Sn#{0,h)} . (44) 

As found in Siegmund [11] or [13], the average excess of the test statistic beyond the thresh- 

olds at termination may be approximated by 

E \SN - h SN > h, X] « p+ (45) 
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and 

E S, N sN<o,x p- (46) 

where p+ and p_ are determined in equations (32) and (33) and are functions of the NPE A. 

Then, using Wald's first equation (6), the ASNs of the Wald test, conditioned on the 

NPE A, may be written as 

Bh(e 
E S, N SN>h,X 

E 

h + E 
9\(x) A 

5JV 
— h SN > h, A 

E 

h + p+ 

9\(x) A 

E 9\ix) A 
(47) 

and 

B0(e\\) = 
E s N sN<o,x 

E 9x (x) 
P- 

X 

E 9x(x) X 
(48) 

Following Siegmund [11] or Basseville and Nikiforov [9], the operating characteristic of the 

Wald test may similarly be related to p+ and p_, except that here it is conditioned on the 

NPE A. Let the conditional MGF of the detector nonlinearity g~x (x) be 

M-x(t) = E J9'x(.x) X (49) 

Under very mild restrictions on gx (x), it can be shown that there exists a nonzero value to 

such that the MGF is one, Mx (te) = 1, where 0 is the signal strength parameter. Substitution 

of this value into Wald's fundamental identity, 

E etSNMx(t) N X = 1 (50) 

results in 

1   =   E 3*fl SN 

i-p{e x E ~te SN SN>h,X P 9 A)E 1*0 SN SN<0,X (51) 
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Solving for 1 - P (0 A) results in 

\-p(e\\) = 
1-E J-e SN SN < 0, A 

E Qtg Sjv SN>h,X 

1-E 

-E 

o*fl 'S'iV 

e4* 5" SN < 0, A 

^iv < 0, A 

eft t«E e*» (
5

JV-A) SN>h,X   - E e4*s" S,v < 0, A 
(52) 

Siegmund [11] and Basseville and Nikiforov [9], in analyzing the standard Page test, now 

proceed by liberally applying a first order approximation to the exponential function. The 

same results may be obtained by recognizing that the expectations in the numerator and 

denominator of equation (52) are describable as the MGF of a random variable evaluated 

at a small argument (-SN is expected to be small when the test terminates by crossing the 

threshold at zero and SN - h is expected to be small when the test terminates by crossing 

the threshold at h). Thus, the following first order approximation may be applied, 

E ~aY =   E i+«v+if! + 
^^     a2E[r2] 

« i + oE[y] 

» eaEni. 

Disregarding terms on the order of (tep-)2, equation (52) becomes 

(53) 

i-p(e\x) 
1 — exp UgE >iV SN< 0,A]} 

eht*exp{teE [SN -h\sN>h,\]}- exp[teE [SN \SN<0,\]} 

1 - etBp- 
etg(h+p+) _ QteP- 

e~tep- - 1 
ete(h+p+-p-) _ I 

teP-   T. (54) 

Substituting equations (47), (48), and (54) into equations (40), (41), and (42), respectively, 

followed by substitution into equation (39), results in the Siegmund-based approximation to 

the ASN of the Page test with nuisance parameter estimation, 

E; 
As (6) = EX 

h + p+- p- 

E 9\{x) A 
+ 

% 

p- 

teP- 
l_Qtg(h+p+-p_) 

(55) 
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The corresponding Wald-based approximation ignores the excess over the boundary; that is, 

p+ -> 0 and p- —> 0. Applying this to equation (55) and utilizing L'Hospital's rule yields 

Aw(Ö)   = lim As (6) 

=   E 

E5 

h 
A V[gx(z) \]_ 

h 
A E [gx (x) x 

+ lim 
p±->0 

% 
P- 

.E g^x) A]_ 

Ex t$P- 
1- _gtg(^+p_l_-p_ -) 

E 
+ lim ■ 

p_-0 

E 
i 

9%{x) 

=   E> E 9x x 

E, 

/i + Es 

ie{i-(i+teP_)ete('l-',-)| 

(l-e'eC'1-''-) 

1 - eteh. 
(56) 

Thus, equations (55) and (56) describe the Siegmund- and Wald-based approximations to 

the ASN of the Page test with nuisance parameter estimation. The MGF root te, Siegmund 

corrections p+ and p_, and nonlinearity mean E [g~x (x)] must be determined on a case-by- 

case basis as functions of the NPE A and substituted into these equations. Under special 

circumstances (e.g., t01 < 0 and tdo > 0 for all A) these equations may yield simpler forms 

accurate for approximation to T and D. 

Relationship to Standard Page Test 

If the amount of data used to estimate the nuisance parameter A tends to infinity and 

the NPE A is consistent, A —► A and the Page test with nuisance parameter estimation 

becomes the standard Page test. Thus, the expectations in equations (55) and (56) over A 

are removed, which, as expected, results in the standard Siegmund-based approximation 

As (9) 
l + te(h + p+- pJ) - e^(h+P+-p-) 

**E [gx (x)] 
(57) 

and the standard Wald-based approximation 

Aw (6) 
l + teh- eteh 

UK [g\ (x)} 
(58) 
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GAUSSIAN SHIFT IN MEAN SIGNAL WITH UNKNOWN VARIANCE 

As previously mentioned, a signal type commonly encountered in sonar signal processing 

may be modeled by a change in the mean of a Gaussian random variable. Additionally, 

suppose that the variance of the Gaussian random variable is unknown but constant. Under 

these conditions, the observed data are distributed according to 

„JW^, (59) 
{ M{^a2)   i>p 

where p is the unknown starting time of the signal, the mean \x is known, and the variance 

a2 is unknown and considered to be a nuisance parameter. If the auxiliary data, say {Yj}j=v 

are assumed to be signal-free, the MLE of a2 is 

In this case, the unbiased estimator for the variance under the signal-present hypothesis, 

-2 = 7E^-?)2' (61) 
J 3=1 

may be equivalently used, where 

Y = Jl-Y.Yi (62) 

and it is assumed that the estimate is formed from J + 1 samples of auxiliary data rather 

than J to retain statistical equivalence between the estimators. 

Appropriately scaled, a2 (for either of the above estimators) follows a central chi-squared 

distribution with J degrees of freedom, 

W = ^ ~ X2 . (63) 

Also note that a2 is unbiased for a2; that is, E [a2] = a2. 

The LLR or locally optimal nonlinearity, with the NPE a2 substituted for a2, has the 

form 

*(*>-&(*-£)• (64) 
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2 

which, in this case, is the actual LLR scaled by |^. The mean, variance, and MGF unity-root 

oig(x) conditioned on the NPE a2 under the signal-present (9 = E [x] = ß) and signal-absent 

(8 = E [x] = 0) hypotheses are found in table 4. Note that the MGF unity-roots are simply 
2 

±1 (the MGF unity-roots for the LLR) divided by the scale term, ^. 

Table 4. Mean, Variance, and MGF Unity-Root for Gaussian Shift in Mean 

Signal Conditioned on the NPE a2 

Signal-present 

(8 = v) 

Signal-absent 

(8 = 0) 

Ve[g(x)} 2<72 2CT
2 

Varö [g (x)} a* 
fa2 

a4 

MGF Root te 
G2 

<72 

a2 

a2 

Conditioned on a2, g (x) is still Gaussian under both the signal-present and signal-absent 

hypotheses. Thus, as found in table 1, the Siegmund correction terms are 

p+ = 0.5825^? (65) 

and 

p_ = -p+ = -0.5825 
\xa 

(66) 

Average Delay Before Detection 

In order to determine the Siegmund-based average delay before detection, Ds = 

As (öi = fj,), each of the terms in equation (55) must be determined under the signal-present 

hypothesis. For notational convenience, let 7 = 0.5825. These terms, which are expectations 

over the NPE (in this case, a2), are as follows: 

~h + p+ - p- 
E, 

"   [E[g(x)\a2}\ 
=   E, 

2a* 
(h + 2^ 

p,a 
2 
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2 

2 v/lE*2 + 27^0" 

— (/ia2 + 27/xa) , (67) 

Ea2 
E[g(x)\ai 

E, 
2(J2 /—7/xcr 

//' 

-27- 
/* 

(68) 

and 

E^2 V~ 
1 _ etß(h+p+-p-) 

— Eg.2 (-s) (-^: 

=   7-E^2 
0" 

7-E.J2 
a 

1-exp {-11(^ + 27^} 

1 
l-exp{-27£-/#}. 

=   7^^e-2fc^E,2 

7" 

fc=0 
oo 

-A;/i4 

£V2*^E 

=   7-L 

ty 
fc=0 
00 Q-2fe7^ 

e   •> w 

a fc=o (l + 2fc 

<7 

/^ 2 

(69) 

where 

^ = E 
K e-2fe7f 

*=i (l + 2fc$) 

(70) 

is used to approximate the infinite summation in the next to last line of equation (69). To 

arrive at the result of equation (69), the MGF of the chi-squared random variable W, 

ji/w e = (1 - 2i)~2 (71) 

is required. 
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Substitution of equations (67)-(69) into equation (55) results in the Siegmund-based 

approximation to D for the Gaussian shift in mean signal with unknown variance, 

D, — (ha2 + 2^/ia) - 

h + 2~i 

2a2 

^2(l + eK) 

l+e/c 

2cr2 

(72) 

In order to determine the Wald-based approximation to the average delay before detec- 

tion, Dw = Aw (0i = ß), the following terms in equation (56) must be determined under 

the signal-present hypothesis: 

and 

E, 

E*2 E ' 9{x) a2 
-1 

= ] E*2 
"2a2" 

2<72 

M2 

r  *M = E^2 

«T2 

cr2 

l — etßh 1- -exp {-/*§§} 

—jVw 
W 

l-exp{-^W}_ 

= -jEw 
fc=0 

= 
-I     oo 

J fc=0 
±W '^e-fc>' 

= — 
1  , oo 

=0 '(■ +
4)- 2      1 

(73) 

- (1 + 6K) , 

where 

** = £ ^+1 2T1 

(74) 

(75) 

is used to approximate the infinite summation in the next to last line of equation (74). 

To arrive at the result of equation (74), the first derivative of the MGF of the chi-squared 

random variable W is required, 

d 
E w We tw 

dt 
-E w 

AW 
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Ä(1"2f)" 
j(i-2ty 2      1 (76) 

Substitution of equations (73) and (74) into equation (56) results in the Wald-based 

approximation to D for the Gaussian shift in mean signal with unknown variance, 

L>w     — 

(£) 
(77) 

The results of equations (72) and (77) are compared to the simulated average delay before 

detection as a function of SNR in figure 9 for J = 20 and h = 5. The simulation used 1000 

trials that were terminated if a threshold crossing did not occur within 1000 samples (all 

trials terminated prior to this limit). Throughout this and the following sections, the eK and 

bK summations in the Siegmund and Wald approximations are terminated at K = 10 and 

the variance estimator of equation (61) is used. Similar to the analysis of the Page test when 

the nuisance parameters are known, the Siegmund-based approximation of equation (72) 

provided substantially more accurate results than the Wald-based approximation. 

Average Time Between False Alarms 

In order to determine the Siegmund-based average time between false alarms, fs - 

As (6>o = 0), each term in equation (55) must be determined under the signal-absent hypoth- 

esis: 

E*2 
h + p+- P- 
E[g(x)\a*]\ 

=     E^2 

P 

p,a 
1 

F 

2<T2   /, n    LU 

ß2   \ a 

[h E*2 [a2] + 27^) 

[ha2 + 27//a) , (78) 

E*2 
E[g(x)\a*} 

E*2 
-2a2 

H< a2 

(79) 
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and 

E*2 
top- 

I _ et0(h+p+-p-) 
=       E&2 m ä2) 

=   7-Ew 

l-exp{f|(/l + 27f)}_ 

exp{-*W-27*} 

e-k$w 

<?       [l-exp{-JW-27^} 

fc=i 
« e-2fc7H 

=     7—2^   

(80) 

Substitution of equations (78)-(80) into equation (55) results in the Siegmund-based approx- 

imation to f for the Gaussian shift in mean signal with unknown variance, 

2  /,   9    n      \      2a2 

Ts   =   —2 \ha + ^H + 
A^e/r 

h + 27^ - -^ 

2<72 

(81) 

In order to determine the Wald-based approximation to the average time between false 

alarms, fw - Aw (0O = 0), each of the terms in equation (56) must be determined under 

the signal-absent hypothesis: 

E*2 E sW a2 =     E^2 
-2a2 

2a2 

V 
(82) 

and 

E*2 
to 

itoh 
E, 

-JEw 

1-exp^fl} 
W 

1 äw 

We'iw 

l-e-7 
00 

w 

W£e 
fc=i 

-few 
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oo 

fc=i  v 
-6K ■ (83) 

1   °°     / h\   *   1 

Substitution of equations (82) and (83) into equation (56) results in the W = Id-based approx- 

imation to f for the Gaussian shift in mean signal with unknown variance, 

h l 

fw   =   —f^. (84) 
2<72 

The results of equations (81) and (84) are compared to the simulated average time be- 

tween false alarms as a function of threshold in figure 10 for J = 20 and a zero dB SNR. 

The simulation used 5000 trials that were terminated if a threshold crossing did not occur 

within 2500 samples (two trials failed to terminate prior to this limit). Again, the Siegmund- 

based approximation of equation (81) provided substantially more accurate results than the 

Wald-based approximation. 

Page Test Performance 

The previous two sections have demonstrated the quality of the Siegmund-based approx- 

imations to D and f for the Page test with nuisance parameter estimation. In this section, 

these approximations are used to investigate the performance as the amount of auxiliary 

data, the SNR, and the threshold are varied. Figure 11 contains a Page test receiver operat- 

ing characteristic (a plot of D against f) where it is seen that the performance tends to that 

of the standard Page test when the variance of the data is known (J = oo) as the amount 

of auxiliary data increases. Figure 12 demonstrates how the threshold required to achieve 

a desired f increases as the amount of auxiliary data diminishes, which is explained by the 

increased variability of the Page test update g~x (XJ) due to the increased variability of the 

NPE A. The loss incurred by having to estimate the unknown variance is seen in figure 13 

as an increase in D when f is held constant. 
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Figure 9. Simulation and Wald and Siegmund Approximations to the Average 
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Asymptotic Performance 

Most applications of the Page test will require a large average time between false alarms. 

This results in a large threshold, h, which can simplify the computation of the threshold 

required to achieve a specific f and also provide insight into the relationship between D and 

f. Assuming that h is large, the Wald approximations to f and D for the standard Page 

test, equations (9) and (10), result in the asymptotic approximations 

f  *     +l   r ( M (85) 
-te0Eeo[g{x)\ 

and 

D   »   TT^W (86) 

where the conditions t6o > 0 and t9l < 0 have been exploited. The exponential relationship 

between h and f and the linear relationship between h and D are evident from equations (85) 

and (86). 

Broder [16] carried this analysis a step further to demonstrate the asymptotic (large 

h) exponential relationship between f and D by introducing an asymptotic performance 

measure and relating it to the MGF root under the signal-absent hypothesis and the mean 

of the Page test statistic update under the signal-present hypothesis, 

r     logf 
V   =    lim -jr- 

=   tAfo(s)] • (87) 

For the Gaussian shift in mean signal where the LLR is used as a nonlinearity, Broder's 

asymptotic performance measure is 

„-£. (88) 
Similarly, such asymptotic relationships can be derived for the Page test with nuisance 

parameter estimation for the Gaussian shift in mean signal. First, observe that 8K of equa- 

tion (75) may be approximated by the first term in the infinite summation when h is large 

enough, 

ÖK   = 777 + ~ 777 + ~ . J+I + 
(l + 2Af+1      (l + 4^)2+1      (l + 6-^2+1 
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(89) 

Use of this approximation in equations (77) and (84) results in the large threshold approxi- 

mations 

- h-1 
Dw   «     

V 

- , (90) 
V 

and 

f. w 
-V 

«   ^ ^-, (91) 
V 

where 77 is as in equation (88) and it has been assumed that J is also somewhat large. The 

linear relationship between h and Dw is seen from equation (90). However, the exponential 

relationship that exists in the standard Page test for the Gaussian shift in mean signal 

becomes the power law relationship described by equation (91) when the nuisance parameters 

are estimated.  As expected, the power law relationship turns into the exponential one of 

equation (85) when the amount of auxiliary data increases to infinity (J —> 00), 

TV   -   -• (92) 
V 

This may be seen by noting that -t9oEdo [g (x)] = 77 and t&0 = 1 for the Gaussian shift in 

mean signal case using the LLR and by applying the identity 

lim fl + -VX = ea6. (93) 
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CONCLUSIONS 

This report has presented a method for dealing with unknown noise or nuisance parameters 

in the Page test for the detection of the onset of a signal. The algorithm is a generalization 

of the standard Page test where the nuisance parameters are estimated using data previous 

to a most recent reset—data declared to be signal-free by the Page test. This also makes 

analysis feasible due to the independence of these data and the data after the most recent 

reset. The ASNs of the Page test with nuisance parameter estimation were derived using 

both Wald- and Siegmund-based approximations. It was shown that as the estimation of the 

nuisance parameter becomes perfect (i.e., infinite auxiliary data), the ASN approximations 

of the Page test with nuisance parameter estimation simplify to the ASN approximations of 

the standard Page test. 

A Gaussian shift in mean signal with an unknown variance was considered as an example. 

Closed forms for the Wald- and Siegmund-based approximations to the average time before 

detection and between false alarms for the Page test with nuisance parameter estimation were 

derived. The validity of the approximations was verified by comparison to simulation results 

where it was observed that, as in the standard Page test, the Siegmund-based approximations 

provide higher accuracy. The Siegmund-based approximations were used to investigate the 

loss in performance incurred by having to estimate the unknown variance; specifically, the 

false alarm performance (f) as a function of threshold and the detection performance (D) 

as a function of SNR. 

The asymptotic, in the sense of a large threshold, relationship between the threshold and 

the average time before detection for the Page test with nuisance parameter estimation was 

found to be linear, as with the standard Page test. However, the asymptotic relationship 

between the threshold and the average time between false alarms was found to follow a 

power law that approximates the exponential relationship of the standard Page test when 

the amount of auxiliary data used to estimate the nuisance parameters becomes large. 
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